- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Martin, J. B. (2)
-
Bilek, S. L. (1)
-
Covington, M. D. (1)
-
García, Jr., Á. A. (1)
-
Gochenour, J. A. (1)
-
Graham, W. D. (1)
-
Grapenthin, R. (1)
-
Heffernan, J. B. (1)
-
Luhmann, A. J. (1)
-
Macalady, J. L. (1)
-
Sekhon, N. (1)
-
Sullivan, P. L. (1)
-
Toran, L. E. (1)
-
Woo, H. B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Typical use of ambient noise interferometry focuses on longer period (>1 s) waves for exploration of subsurface structure and other applications, while very shallow structure and some environmental seismology applications may benefit from use of shorter period (<1 s) waves. We explore the potential for short‐period ambient noise interferometry to determine shallow seismic velocity structures by comparing two methodologies, the conventional amplitude‐based cross‐correlation and linear stacking (TCC‐Lin) and a more recently developed phase cross‐correlation and time‐frequency phase‐weighted‐stacking (PCC‐PWS) method with both synthetic and real data collected in a heterogeneous karst aquifer system. Our results suggest that the PCC‐PWS method is more effective in extracting short‐period wave velocities than the TCC‐Lin method, especially when using data collected in regions containing complex shallow structures such as the karst aquifer system investigated here. In addition to the different methodologies for computing the cross correlation functions, we also examine the relative importance of signal‐to‐noise ratio and number of wavelengths propagating between station pairs to determine data/solution quality. We find that the lower number of wavelengths of 3 has the greatest impact on the network‐averaged group velocity curve. Lastly, we test the sensitivity of the number of stacks used to create the final empirical Green's function, and find that the PCC‐PWS method required about half the number of cross‐correlation functions to develop reliable velocity curves compared to the TCC‐Lin method. This is an important advantage of the PCC‐PWS method when available data collection time is limited.more » « less
-
Covington, M. D.; Martin, J. B.; Toran, L. E.; Macalady, J. L.; Sekhon, N.; Sullivan, P. L.; García, Jr., Á. A.; Heffernan, J. B.; Graham, W. D. (, Earth's Future)Abstract Earth's Critical Zone (CZ), the near‐surface layer where rock is weathered and landscapes co‐evolve with life, is profoundly influenced by the type of underlying bedrock. Previous studies employing the CZ framework have focused primarily on landscapes dominated by silicate rocks. However, carbonate rocks crop out on approximately 15% of Earth's ice‐free continental surface and provide important water resources and ecosystem services to ∼1.2 billion people. Unlike silicates, carbonate minerals weather congruently and have high solubilities and rapid dissolution kinetics, enabling the development of large, interconnected pore spaces and preferential flow paths that restructure the CZ. Here we review the state of knowledge of the carbonate CZ, exploring parameters that produce contrasts in the CZ in different carbonate settings and identifying important open questions about carbonate CZ processes. We introduce the concept of a carbonate‐silicate CZ spectrum and examine whether current conceptual models of the CZ, such as the conveyor model, can be applied to carbonate landscapes. We argue that, to advance beyond site‐specific understanding and develop a more general conceptual framework for the role of carbonates in the CZ, we need integrative studies spanning both the carbonate‐silicate spectrum and a range of carbonate settings.more » « less
An official website of the United States government
